Subversion Repositories ALCASAR

Rev

Blame | Last modification | View Log

/*********************************************************************
* Filename:   sha256.c
* Author:     Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details:    Implementation of the SHA-256 hashing algorithm.
                          SHA-256 is one of the three algorithms in the SHA2
                          specification. The others, SHA-384 and SHA-512, are not
                          offered in this implementation.
                          Algorithm specification can be found here:
                           * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
                          This implementation uses little endian byte order.
*********************************************************************/

/*************************** HEADER FILES ***************************/
#include <stdlib.h>
#include <memory.h>
#include "SHA256.h"

/****************************** MACROS ******************************/
#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))

#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))

/**************************** VARIABLES *****************************/
static const uint32_t k[64] = {
        0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
        0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,
        0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,
        0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,
        0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,
        0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
        0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,
        0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
};

/*********************** FUNCTION DEFINITIONS ***********************/
void sha256_transform(SHA256_CONTEXT* ctx, const uint8_t data[])
{
        uint32_t a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];

        for (i = 0, j = 0; i < 16; ++i, j += 4)
                m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);
        for (; i < 64; ++i)
                m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];

        a = ctx->state[0];
        b = ctx->state[1];
        c = ctx->state[2];
        d = ctx->state[3];
        e = ctx->state[4];
        f = ctx->state[5];
        g = ctx->state[6];
        h = ctx->state[7];

        for (i = 0; i < 64; ++i) {
                t1 = h + EP1(e) + CH(e, f, g) + k[i] + m[i];
                t2 = EP0(a) + MAJ(a, b, c);
                h = g;
                g = f;
                f = e;
                e = d + t1;
                d = c;
                c = b;
                b = a;
                a = t1 + t2;
        }

        ctx->state[0] += a;
        ctx->state[1] += b;
        ctx->state[2] += c;
        ctx->state[3] += d;
        ctx->state[4] += e;
        ctx->state[5] += f;
        ctx->state[6] += g;
        ctx->state[7] += h;
}

void SHA256Init(SHA256_CONTEXT* ctx)
{
        ctx->datalen = 0;
        ctx->bitlen = 0;
        ctx->state[0] = 0x6a09e667;
        ctx->state[1] = 0xbb67ae85;
        ctx->state[2] = 0x3c6ef372;
        ctx->state[3] = 0xa54ff53a;
        ctx->state[4] = 0x510e527f;
        ctx->state[5] = 0x9b05688c;
        ctx->state[6] = 0x1f83d9ab;
        ctx->state[7] = 0x5be0cd19;
}

void SHA256Update(SHA256_CONTEXT* ctx, const uint8_t data[], size_t len)
{
        uint32_t i;

        for (i = 0; i < len; ++i) {
                ctx->data[ctx->datalen] = data[i];
                ctx->datalen++;
                if (ctx->datalen == 64) {
                        sha256_transform(ctx, ctx->data);
                        ctx->bitlen += 512;
                        ctx->datalen = 0;
                }
        }
}

void SHA256Final(SHA256_CONTEXT* ctx, uint8_t hash[])
{
        uint32_t i;

        i = ctx->datalen;

        // Pad whatever data is left in the buffer.
        if (ctx->datalen < 56) {
                ctx->data[i++] = 0x80;
                while (i < 56)
                        ctx->data[i++] = 0x00;
        }
        else {
                ctx->data[i++] = 0x80;
                while (i < 64)
                        ctx->data[i++] = 0x00;
                sha256_transform(ctx, ctx->data);
                memset(ctx->data, 0, 56);
        }

        // Append to the padding the total message's length in bits and transform.
        ctx->bitlen += ctx->datalen * 8;
        ctx->data[63] = ctx->bitlen;
        ctx->data[62] = ctx->bitlen >> 8;
        ctx->data[61] = ctx->bitlen >> 16;
        ctx->data[60] = ctx->bitlen >> 24;
        ctx->data[59] = ctx->bitlen >> 32;
        ctx->data[58] = ctx->bitlen >> 40;
        ctx->data[57] = ctx->bitlen >> 48;
        ctx->data[56] = ctx->bitlen >> 56;
        sha256_transform(ctx, ctx->data);

        // Since this implementation uses little endian byte ordering and SHA uses big endian,
        // reverse all the bytes when copying the final state to the output hash.
        for (i = 0; i < 4; ++i) {
                hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
                hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
                hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
                hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
                hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
                hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
                hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
                hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
        }
}

Generated by GNU Enscript 1.6.6.