3085 |
rexy |
1 |
/*********************************************************************
|
|
|
2 |
* Filename: sha256.c
|
|
|
3 |
* Author: Brad Conte (brad AT bradconte.com)
|
|
|
4 |
* Copyright:
|
|
|
5 |
* Disclaimer: This code is presented "as is" without any guarantees.
|
|
|
6 |
* Details: Implementation of the SHA-256 hashing algorithm.
|
|
|
7 |
SHA-256 is one of the three algorithms in the SHA2
|
|
|
8 |
specification. The others, SHA-384 and SHA-512, are not
|
|
|
9 |
offered in this implementation.
|
|
|
10 |
Algorithm specification can be found here:
|
|
|
11 |
* http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
|
|
|
12 |
This implementation uses little endian byte order.
|
|
|
13 |
*********************************************************************/
|
|
|
14 |
|
|
|
15 |
/*************************** HEADER FILES ***************************/
|
|
|
16 |
#include <stdlib.h>
|
|
|
17 |
#include <memory.h>
|
|
|
18 |
#include "SHA256.h"
|
|
|
19 |
|
|
|
20 |
/****************************** MACROS ******************************/
|
|
|
21 |
#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
|
|
|
22 |
#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))
|
|
|
23 |
|
|
|
24 |
#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
|
|
|
25 |
#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
|
|
|
26 |
#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
|
|
|
27 |
#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
|
|
|
28 |
#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
|
|
|
29 |
#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
|
|
|
30 |
|
|
|
31 |
/**************************** VARIABLES *****************************/
|
|
|
32 |
static const uint32_t k[64] = {
|
|
|
33 |
0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
|
|
|
34 |
0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,
|
|
|
35 |
0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,
|
|
|
36 |
0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,
|
|
|
37 |
0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,
|
|
|
38 |
0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
|
|
|
39 |
0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,
|
|
|
40 |
0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
|
|
|
41 |
};
|
|
|
42 |
|
|
|
43 |
/*********************** FUNCTION DEFINITIONS ***********************/
|
|
|
44 |
void sha256_transform(SHA256_CONTEXT* ctx, const uint8_t data[])
|
|
|
45 |
{
|
|
|
46 |
uint32_t a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
|
|
|
47 |
|
|
|
48 |
for (i = 0, j = 0; i < 16; ++i, j += 4)
|
|
|
49 |
m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);
|
|
|
50 |
for (; i < 64; ++i)
|
|
|
51 |
m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
|
|
|
52 |
|
|
|
53 |
a = ctx->state[0];
|
|
|
54 |
b = ctx->state[1];
|
|
|
55 |
c = ctx->state[2];
|
|
|
56 |
d = ctx->state[3];
|
|
|
57 |
e = ctx->state[4];
|
|
|
58 |
f = ctx->state[5];
|
|
|
59 |
g = ctx->state[6];
|
|
|
60 |
h = ctx->state[7];
|
|
|
61 |
|
|
|
62 |
for (i = 0; i < 64; ++i) {
|
|
|
63 |
t1 = h + EP1(e) + CH(e, f, g) + k[i] + m[i];
|
|
|
64 |
t2 = EP0(a) + MAJ(a, b, c);
|
|
|
65 |
h = g;
|
|
|
66 |
g = f;
|
|
|
67 |
f = e;
|
|
|
68 |
e = d + t1;
|
|
|
69 |
d = c;
|
|
|
70 |
c = b;
|
|
|
71 |
b = a;
|
|
|
72 |
a = t1 + t2;
|
|
|
73 |
}
|
|
|
74 |
|
|
|
75 |
ctx->state[0] += a;
|
|
|
76 |
ctx->state[1] += b;
|
|
|
77 |
ctx->state[2] += c;
|
|
|
78 |
ctx->state[3] += d;
|
|
|
79 |
ctx->state[4] += e;
|
|
|
80 |
ctx->state[5] += f;
|
|
|
81 |
ctx->state[6] += g;
|
|
|
82 |
ctx->state[7] += h;
|
|
|
83 |
}
|
|
|
84 |
|
|
|
85 |
void SHA256Init(SHA256_CONTEXT* ctx)
|
|
|
86 |
{
|
|
|
87 |
ctx->datalen = 0;
|
|
|
88 |
ctx->bitlen = 0;
|
|
|
89 |
ctx->state[0] = 0x6a09e667;
|
|
|
90 |
ctx->state[1] = 0xbb67ae85;
|
|
|
91 |
ctx->state[2] = 0x3c6ef372;
|
|
|
92 |
ctx->state[3] = 0xa54ff53a;
|
|
|
93 |
ctx->state[4] = 0x510e527f;
|
|
|
94 |
ctx->state[5] = 0x9b05688c;
|
|
|
95 |
ctx->state[6] = 0x1f83d9ab;
|
|
|
96 |
ctx->state[7] = 0x5be0cd19;
|
|
|
97 |
}
|
|
|
98 |
|
|
|
99 |
void SHA256Update(SHA256_CONTEXT* ctx, const uint8_t data[], size_t len)
|
|
|
100 |
{
|
|
|
101 |
uint32_t i;
|
|
|
102 |
|
|
|
103 |
for (i = 0; i < len; ++i) {
|
|
|
104 |
ctx->data[ctx->datalen] = data[i];
|
|
|
105 |
ctx->datalen++;
|
|
|
106 |
if (ctx->datalen == 64) {
|
|
|
107 |
sha256_transform(ctx, ctx->data);
|
|
|
108 |
ctx->bitlen += 512;
|
|
|
109 |
ctx->datalen = 0;
|
|
|
110 |
}
|
|
|
111 |
}
|
|
|
112 |
}
|
|
|
113 |
|
|
|
114 |
void SHA256Final(SHA256_CONTEXT* ctx, uint8_t hash[])
|
|
|
115 |
{
|
|
|
116 |
uint32_t i;
|
|
|
117 |
|
|
|
118 |
i = ctx->datalen;
|
|
|
119 |
|
|
|
120 |
// Pad whatever data is left in the buffer.
|
|
|
121 |
if (ctx->datalen < 56) {
|
|
|
122 |
ctx->data[i++] = 0x80;
|
|
|
123 |
while (i < 56)
|
|
|
124 |
ctx->data[i++] = 0x00;
|
|
|
125 |
}
|
|
|
126 |
else {
|
|
|
127 |
ctx->data[i++] = 0x80;
|
|
|
128 |
while (i < 64)
|
|
|
129 |
ctx->data[i++] = 0x00;
|
|
|
130 |
sha256_transform(ctx, ctx->data);
|
|
|
131 |
memset(ctx->data, 0, 56);
|
|
|
132 |
}
|
|
|
133 |
|
|
|
134 |
// Append to the padding the total message's length in bits and transform.
|
|
|
135 |
ctx->bitlen += ctx->datalen * 8;
|
|
|
136 |
ctx->data[63] = ctx->bitlen;
|
|
|
137 |
ctx->data[62] = ctx->bitlen >> 8;
|
|
|
138 |
ctx->data[61] = ctx->bitlen >> 16;
|
|
|
139 |
ctx->data[60] = ctx->bitlen >> 24;
|
|
|
140 |
ctx->data[59] = ctx->bitlen >> 32;
|
|
|
141 |
ctx->data[58] = ctx->bitlen >> 40;
|
|
|
142 |
ctx->data[57] = ctx->bitlen >> 48;
|
|
|
143 |
ctx->data[56] = ctx->bitlen >> 56;
|
|
|
144 |
sha256_transform(ctx, ctx->data);
|
|
|
145 |
|
|
|
146 |
// Since this implementation uses little endian byte ordering and SHA uses big endian,
|
|
|
147 |
// reverse all the bytes when copying the final state to the output hash.
|
|
|
148 |
for (i = 0; i < 4; ++i) {
|
|
|
149 |
hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
|
|
|
150 |
hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
|
|
|
151 |
hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
|
|
|
152 |
hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
|
|
|
153 |
hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
|
|
|
154 |
hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
|
|
|
155 |
hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
|
|
|
156 |
hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
|
|
|
157 |
}
|
|
|
158 |
}
|