Subversion Repositories ALCASAR

Rev

Details | Last modification | View Log

Rev Author Line No. Line
3085 rexy 1
/*********************************************************************
2
* Filename:   sha256.c
3
* Author:     Brad Conte (brad AT bradconte.com)
4
* Copyright:
5
* Disclaimer: This code is presented "as is" without any guarantees.
6
* Details:    Implementation of the SHA-256 hashing algorithm.
7
			  SHA-256 is one of the three algorithms in the SHA2
8
			  specification. The others, SHA-384 and SHA-512, are not
9
			  offered in this implementation.
10
			  Algorithm specification can be found here:
11
			   * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
12
			  This implementation uses little endian byte order.
13
*********************************************************************/
14
 
15
/*************************** HEADER FILES ***************************/
16
#include <stdlib.h>
17
#include <memory.h>
18
#include "SHA256.h"
19
 
20
/****************************** MACROS ******************************/
21
#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
22
#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))
23
 
24
#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
25
#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
26
#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
27
#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
28
#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
29
#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
30
 
31
/**************************** VARIABLES *****************************/
32
static const uint32_t k[64] = {
33
	0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
34
	0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,
35
	0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,
36
	0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,
37
	0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,
38
	0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
39
	0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,
40
	0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
41
};
42
 
43
/*********************** FUNCTION DEFINITIONS ***********************/
44
void sha256_transform(SHA256_CONTEXT* ctx, const uint8_t data[])
45
{
46
	uint32_t a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
47
 
48
	for (i = 0, j = 0; i < 16; ++i, j += 4)
49
		m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);
50
	for (; i < 64; ++i)
51
		m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
52
 
53
	a = ctx->state[0];
54
	b = ctx->state[1];
55
	c = ctx->state[2];
56
	d = ctx->state[3];
57
	e = ctx->state[4];
58
	f = ctx->state[5];
59
	g = ctx->state[6];
60
	h = ctx->state[7];
61
 
62
	for (i = 0; i < 64; ++i) {
63
		t1 = h + EP1(e) + CH(e, f, g) + k[i] + m[i];
64
		t2 = EP0(a) + MAJ(a, b, c);
65
		h = g;
66
		g = f;
67
		f = e;
68
		e = d + t1;
69
		d = c;
70
		c = b;
71
		b = a;
72
		a = t1 + t2;
73
	}
74
 
75
	ctx->state[0] += a;
76
	ctx->state[1] += b;
77
	ctx->state[2] += c;
78
	ctx->state[3] += d;
79
	ctx->state[4] += e;
80
	ctx->state[5] += f;
81
	ctx->state[6] += g;
82
	ctx->state[7] += h;
83
}
84
 
85
void SHA256Init(SHA256_CONTEXT* ctx)
86
{
87
	ctx->datalen = 0;
88
	ctx->bitlen = 0;
89
	ctx->state[0] = 0x6a09e667;
90
	ctx->state[1] = 0xbb67ae85;
91
	ctx->state[2] = 0x3c6ef372;
92
	ctx->state[3] = 0xa54ff53a;
93
	ctx->state[4] = 0x510e527f;
94
	ctx->state[5] = 0x9b05688c;
95
	ctx->state[6] = 0x1f83d9ab;
96
	ctx->state[7] = 0x5be0cd19;
97
}
98
 
99
void SHA256Update(SHA256_CONTEXT* ctx, const uint8_t data[], size_t len)
100
{
101
	uint32_t i;
102
 
103
	for (i = 0; i < len; ++i) {
104
		ctx->data[ctx->datalen] = data[i];
105
		ctx->datalen++;
106
		if (ctx->datalen == 64) {
107
			sha256_transform(ctx, ctx->data);
108
			ctx->bitlen += 512;
109
			ctx->datalen = 0;
110
		}
111
	}
112
}
113
 
114
void SHA256Final(SHA256_CONTEXT* ctx, uint8_t hash[])
115
{
116
	uint32_t i;
117
 
118
	i = ctx->datalen;
119
 
120
	// Pad whatever data is left in the buffer.
121
	if (ctx->datalen < 56) {
122
		ctx->data[i++] = 0x80;
123
		while (i < 56)
124
			ctx->data[i++] = 0x00;
125
	}
126
	else {
127
		ctx->data[i++] = 0x80;
128
		while (i < 64)
129
			ctx->data[i++] = 0x00;
130
		sha256_transform(ctx, ctx->data);
131
		memset(ctx->data, 0, 56);
132
	}
133
 
134
	// Append to the padding the total message's length in bits and transform.
135
	ctx->bitlen += ctx->datalen * 8;
136
	ctx->data[63] = ctx->bitlen;
137
	ctx->data[62] = ctx->bitlen >> 8;
138
	ctx->data[61] = ctx->bitlen >> 16;
139
	ctx->data[60] = ctx->bitlen >> 24;
140
	ctx->data[59] = ctx->bitlen >> 32;
141
	ctx->data[58] = ctx->bitlen >> 40;
142
	ctx->data[57] = ctx->bitlen >> 48;
143
	ctx->data[56] = ctx->bitlen >> 56;
144
	sha256_transform(ctx, ctx->data);
145
 
146
	// Since this implementation uses little endian byte ordering and SHA uses big endian,
147
	// reverse all the bytes when copying the final state to the output hash.
148
	for (i = 0; i < 4; ++i) {
149
		hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
150
		hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
151
		hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
152
		hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
153
		hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
154
		hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
155
		hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
156
		hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
157
	}
158
}